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CLOUD PATTERN RECOGNITION

R. D. Joseph, S. S. Viglione, H, F. Wolf

ABSTRACT

Cloud cover photographs transmitted from meteorological satellites
must be processed and interpreted before weather maps can be issued. Most
of the routine processing can be handled by present day digital computer tech-
niques; however, the recognition and interpretation of cloud patterns, such as
vortices indicating hurricanes, must still be performed by humans due to thc
lack of suitable recognition mechanisms. This paper investigates the feasibility
of using a perceptron-type computer for the recognition of vortex patterns. A
formula is derived which enables the prediction of machine performance as a
function of problem complexity and percepiron size (pumber of logic units).

It is shown that the problem complexity can be estimated through optical
corrclation measurements on cloud cover negatives. These measurements
are described and a computer routine is developed which mechanizes the
prediction equations and examines the experimental data gained from 10, 000
measurements. The results of the computer program are prescnted and their

meaning is discussed,

[

o

"‘Astropower Laboratory, Missile & Space Division, Douglas Aircraft Co., Inc.
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INTRODUCT:ION

“

This paper discusses the results of a study“{' to determine the feasibility
of using a self-organizing, parallel logic system, as diagrammed in Figure 1,
for the recognition cf cloud patterns,

The input connections for each majority logic unit sample the cloud
pattern in storage. The logic units compute majority logic propositions con-
cerning the cleoud pattern, the particular prcposition being determined by the
input connections. Thus each majority logic unit becomes a property filter,
recognizing a specific property of the incoming pattern, The input cennections
themselves represent 2 sampling of a much larger list of property filters. This
list may be selected completely at randem, determined entirely from the known
properties of the patterns, or compiled by combinations of these approaches -
the method of seleciing the property filter list depends upon how well the bases
for pattern classification are understood. The self-organizing routine detesr-
mines the utility of the various property filters included in the machine,

Feasibility of this approach was to be determined by estimating the
number of logic units required for the recognition of vortices. Theoretical
optimization studies were also undertaken to reduce the cecmplexity of the logic
layer by increasing the sfficiency of each logic unit arnd by optimizing the legic
input connecticns and threshold setting,

A review of self-organized pattern recognition machines is presented,
The general machine crganization, the learning rules épplied during the self-
organizing pericd, and several procedures for reducing the size of machine re~
quired fcr a giver performance are discussed, The next secticn gives the
mathematical derivations upon which the estimation of machine size is based,
This is follewed by a discussion in detail of the selection and preparaticn of
the cloud photographs, the design of the optical correlator, and the optical meas-
urems=uts, The final zecticn discusses the computer program that was written

to evaluate the optical data and gives the results cf the program,

“This work was performed in partunder contract NASw609 fromthe Directorate of
Electronics and Data Processing, NASA Headquarters, Washington. D. C,
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SELF-ORGANIZING, PARALLEL LOGIC SYSTEMS

Pattern classification must often be based on incompletely specified
criteria empirically derived from '"typical examples'' of the pattern classes,.
While this method is characteristic of humans, it has only recently been
adapted to automata. Machines which use this method are called self-

organizing systems.

Organization of Parallel Logic Systems

In the devices to be considered, the patterns are to be classified on the
basis of a discrete sampling of the pattern data. The samples obtained {rom a
particular pattern class may be conceptualized as a set of coordinates which
represents the pattern as a point in a k-dimensional signal space. The design
of an automatic pattern classification device then is largely the specification of
a partition on this space such that the cells of the partition may be identified
with unique classes of patterns. The design constraints must include the maxi-
mum probability of error acceptable after the specification of the partition, and
the limitations on the cost necessary to automate the process of specifying the
classification regions {the decision process).

When the patterrs associated with unique classes are concentrated in
well-defined and widely separated regions of the signal space, simple and highly
accurate decision mechanisms may be constructed. In more difficult designs,

a useful approach is tc employ simple decision devices (to achie've low cost) in
fairly elaborate structures (to achieve the required partition coraplexity). Such
a structure is diagrammed in Figure 2,

The ''S'" units are the sensory or input units to the device. In the case of
pictorial data, a sensory unit is associated with a picture element and generates
a signal proportional to the brightness of that element. The sensory field is
connected to the first-layer logic units through weighted connections to translate
the incoming signal to a form more suitable for recognition. The input signal
may be translated through several layers of logic units, but eventually there is
an inevitable '"necking down'' of the data - referred to as abstraction.

The performance of a parallel logic system may be characterized in

terms of the response units. The response units considered here are two-state

TP-1967 3
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devices required to be in one state when a particular pattern is present in
the signal displayed to the sensor units, and in a second state when this pattern
is not present. "

Initially there is little organization in these machines. However, by
showing a sequence of signals to the machine and varying the weights of the con-
nections between logic layers, or between logic and response layers, the ma-
chine's ability to classify patterns is improved.

A significant feature of these machines is their generalization capability.
Since the classification of a pattern is made on a statistical basis, many logic
units are active for each correct classification. The existence of a slightly
different property in a signal of the same class as that upon which the machine was
trained activates a large portion of the appropriate logic units, enabling correct
classification despite minor variations in the pattern,

The decision units in Figure 2 are linear logic unitsj" A lincar logic unit
partitions the subspace defined by the scurces of its inputs by passing a single
hyperplane through the subspace, assigning a classification of ""one' to patterns
falling on cne side of the hyperplane and ""zero'! to patterns falling on th.erother
side. The linear logic unit mechanism is diagrammed in Figure 3, The rule
governing the behavior of this unit is as fellows: if the weighted sum of the
input ‘;W.ei exceeds a threshold, 8, then an cutput, e, is generated and the unit
is said to be active,

' .
1if EiJWieif_ €
e =

© 0 otherwise

The simplest organization which would give the machine a capacity tc

. . s . 3 - "‘:)“.
perform significant tasks contains two layers of logic {(Figure 4). The senscry
field again provides the input, and a linear logic unit serves as a report-out unit.

Between the two is inserted a layer of linear logic units, All of the connections

7Y

Winder, R. O., ''"Threshold Logic in Artificial Intelligence, ' Artificial
Intelligence Sessions, IEEE Winter General Meeting, Jan 1963,

"It should be noted that many pattern recognition devices are based on this
structure - for example, the designs of Bledsoe and Browning, Gambs,
Kamensky, Rosenblatt, Widrow, and the Astropcwer Decision Filier,
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shown are weighted. The connections from sensory points to logic units are

many-to-many, and from logic units to report-out units are all-to-all,

Self-Organizing Algorithms

Forced Learning

After selecting this organization as the network structure, a large
number of network parameters remain to be specified. These parameters
include the number of input connections, and the source points of these inputs
for each logic unit; the weights of all connections from the sensory field to the
logic units, and from the logic units to the decision elements; and the thresholds
of all logic units and decision elements., A rule for automatically determining
the values of these parameters based on a sample of classified patterns is called
a self-organizing algorithm,

The particular algorithm utilized is called "forced learning'’ and is
implemented in the following manner. When a logic unit is supplied with a set
of input connections, it becomes a property filterjk determining whether or rot
the input patterns possess the particular property-. A list of properties is
established, and a sampling of these is selected for the recognition machinre.

The self-organizing procedure then determines the utility of the varicus property
filters and the efficiency of the property list in making the required classificaticn,
The learning rule is such that it increases the weights of the connections from
active urits to the report-out unit when a pattern of interest is present, and
reduces the connection weight of active units when no target or pattern of interest
is present, With such a procedure, reliable indicatcrs of target preseance {that
is, units which measure properties possessed by patterns of interest] will tend

to carry large positive weights. Units which are reliable indicators that a

target is not present, and hence measure properties possessed primarily by

nontargets, will tend to carry’large negative weights. Units which are less re-
liable indicators of the presence or absence of patterns of interest will carry

positive or negative weights of lesser magnitude.

Singer, T. R., '"Model for a Size invariant Pattern Recogrition System, " paper
presented at the Bionics Symposium. Dayton; O., Sept 1960; Martin, T, B., and
Talavage, J. F., "Application of Neural Logic to Speech Analysis and Recogni-

tion, " paper presented at the Bionics Symposium, Dayton, O., 1963,

TP-1967 ’ 8



The list of property filters from which the logic unit input connections
are selected is quite significant, The structure of this list determines the
task for which the machine is suitable - that is, if the recognition machine is
to perform properly, it must have the foundations upon which to function.

Many techniques are available for generating this property list, One method
is to manually build into the list each known parameter of the patterns to be
classified. Such a procedure is time-consuming and tedious, and z2bove all,

it may not lead to a machine capable of correct classification if the discrimin-
ation clues are subtle and not known to the designer. One approach to this
preblem is to incorporate those properties known to be useful, then generate
additioral properties randomly and let the self-organizing procedure select the
discrimiraticon criteria. Such a procedure requires an extensive property list
and may be accommeodated by performing the self-organization in a simulzated
mode on a large scale general purpoese digital computer,

The forced learning procedure is readily implemented in a computer
simulation, It is well documented mathematically and gives rise to the "Theorem
of Statical Separability, n For this theorem to hold, it is required that the
properiy list emphasize the difference between pattern of interest and pattern of
nointerest, and the similarities between these classes, The theorem meakes it
possible to compute whether or not the property list meets this requirement and
to establish the required size of the logic layer for a specified performaxnce level,
It formed the basis for the work performed and is discussed thoroughly in a
following paragraph entitled "Estimation of Machine Size, "

Alternate Algorithms

Machine designs achieved with forced learning usually require excessive
numbers of lcgic units since all those thatwere originally generated, no matter
what their contribution to the classification task, are included in the firal design,
Other algorithms have been developed for the design of efficient networks by in-

creasing the effectiveness and the efficiency of the logic structure. One such

":Joseph, R. D,, "Contributions to Perceptron Theory,'" Ph,D Thesis, Cornell
University, Sept 1961,

TP-1967 9



procedure involves the examination of the assigned weights, eliminating those
units that have weights of zero or negligible magnitude and retain only those
units with the largest positive and negative value. This is known as the "natural
.selection”* principle and was developed specifically to decrease the complexity
of machines designed wiith forced learning.

A particularly powerful algor'1thn§;?q de\}eloped concurrently with this
program, employs the statistical techniques of discriminant analysis to gen-
erate populations of logic units to be examined, while using a minimum loss
criteria for determining the suitability of these units for inclusion in the final

network. This Y“iterative design' routine shows evidence of being able to achieve
g g

extremely efficient designs and of effectively separating complex pattern classes,

8 Joseph, R. D., Kelly, P. M,, Viglione, S, S., "An Optical Decision Filter, "
Proc. IEEE, Vol. 51, August 1963.

>mDauly, J. A., Joseph, R. D., Ramsey, D. M., "An Iterative Design Technique
for Pattern Classification Logic, " presented at WESCON, August 1963,

TP-1927 10




ESTIMATION OF MACHINE SIZE

Statistical analysis of perceptron-type systems permits the estimation
of their performance capabilities without actual network construction or simu-
lation. When the recognition task becomes even moderately complex, how-
ever, the exact statistical analyses become unwieldy. Astropower personnel
have developed an approximate analysis which is in fact less cumbersome
then simulation. This section presents an exact analysis, the approximation,
and means for estimating the parameters required.

b

Exact Perceptron Analysis

The problem to be considered is the classification of a large number of
multidimensional vectors into two categories. The data in each signal point
are to be processed by a large number of logic units simultaneously; each logic
unit determines the truth of some linear logic proposition when applied to the
vecter under examination. As a result of this detailed examination of the indi-
vidual vector, that vector receives a classification. Suppose that the sensory
field under consideration contains n points, so that the weighted input connec-
tions to a given logic unit can be represented as an n-dimensional VCCtO—l“.

The j-th component of this vector represents the weight of the input connection
from the j-th sensory point. The absence of a connection is represented by a

Zero.

The connection vectors for the logic units are selected randomly as
follows. A distribution is assigned to the space of all possible input connec-
tion vectors (n-space), and the connection vector for each logic unit is selected
independently according to this distribution. The set ¢f connection vectors
assigned non-zero probability is called the property list. In this case, the
property list was generated by assuming that the sum of the weights of the
input connections to each logic unit is "A," and the sum of squares of these
weights is ""B'" (the numbers A and B being the parameters to be optimized),
and that the points of origin of each input connection are selected independently,

according to a uniform distribution over the entire sensory field.

1Joseph, R. D., "Contributions to Perceptron Theory,'" Cornell Aeronautical
Laboratorvy Report VG 1196-G7.

ZRosenblatt, F., Principles of Neurodynamics, Spartan Books, 1962

TP1967 | 11



Let Ci denote the input connection vector for the i-th logic unit, and
Sk the input pattern expressed as an n-dimensional vector. The output of
the i-th logic unit when the k-th pattern is shown, which will be denoted by
él;, can be expressed in terms of the inner product of the connection vector

and the signal vector

lifCi-Sk~9>O

0 otherwise

where 8§ is the threshold of the unit. The outputs of the logic units pass through

variably weighted connections to serve as inputs to an output unit.

It is assumed that there are M input patterns, each to be grouped into
one of two classes. With each pattern, there is an associated number § which
indicates the desired classification of the pattern. Thus

K [l if Sk is to be classified in the positive class

6 = \—l if Sk is to be classified in the negative class

A sequence of patterns is selected. Thé_ patterns are drawn from the
population of patterns to be classified. Any individual pattern may appezr in
this sequence several times, or it need not appear at all. The number of
appearances of the pattern Sj in the sequence is denoted by nj. Following the
selection of the connection vectors, this sequence of patterns is shown to the

machine, during which the weights of the variable connections are modified.

The connections from the logic units to the report-out unit have variable
weights. These weights are initially set to zero and then varied according to
the following rule: if the i-th logic unit is activated when pattern Sk is shown
during the adaptive sequence, then ék is added to the weight of the connection
from the i-th unit to the report-out unit. Otherwise, the weight is unchanged.
This can be restated as: the weight of the connection from the i-th unit to the
report-out unit is changed by 5k5§< each time Sk is shown during training. This

is known as the "forced learning'' rule.

Thus the weight of the i-th connection will be

M
w., = X nkékél.:

bok=l

TP1967 12



after the adaptive sequence. Consequently, if the input to the report-out unit

when st is shown is denoted by Bt, then

N N M
t t k k. k
B=Jwi6i:§3 Enééi
=1 i=1 k=1

t
i

&

i
The output unit is said to have made a correct decision if

Bt>e

< O
for
t .
6§ = +1 respectively.

. . t . .
Consider the factors influencing g8, and hence the classification of st:

6k = Previously determined classification for Sk

5}; = Determined by connection vector of i-th logic unit
k _ . oK . .

n = Choice of frequency of S in the adaptive sequence

Note that it follows that with a particular choice of network, adaptive scquence,
‘s . . . t . )
and classification scheme, the decision on the test patiern, S, is completely

deterministic.

When it is presumed that a random selection of connection vectors has

: ¢ .
been made, then 8 may be analyzed as a random variable.

. t . . .
Developing 8" as the sum of N independent random variables permits

an evaluation of the variance:

N N
2, t 2, t t, 2 ) t, ]2
(8 = 7 o%(e) = v (E(eD® - [E(s)]
i=1 i=1
M
t k t
B: = 3 nkékéiél
k=1
M M . .
t,2 ki k.t
(B = ¢ ¢ nin"g%s 816, 8,
j=1 k=1

TP1967 13



Defining the following symbols:

j .t . . .
th = E {6‘1 éi} = Probability of selecting a connection vector such
) that the i-th associative unit is active for both sd
and st under the assumption of random selec-

tion of connection vectors, that th is indepen-

dent of i.
[kt . . . _
ijt =K 876, 6;/= Probability of selecting a connection vector
such that the i-th asscciative unit is active for
SJ, Sk, and St, again independent of i.
One may write:
M .
1 .t Co
E(g8) I ons Q. (1)
j=1 y
and
M M . .
OZ(B;-C) = L ank 6Jék {Qv’kt - Q'i th
 j=1 k=1 : Rt
Hence:
M M .
2,1 t k .k
clge)=5 £ ol (O, -Q. 0 (2)
N =1 k=1 jkt it Tkt

Once a threshold for the response unit is selected. the mean and variance
of at may be used in the Tschebycheff inequality to provide an absolute bound
on the error probability. it may also be assumed that et is approximately nor-
mally distributed (since it is the sum of a large number of independent, well-

behaved variables) to provide more reasonable estimates of the errox probability,

One may also consider the test pattern st as having been szlected at
random either from the class of positive patterns (cloud formations contain-
ing vortices) or from the negative class. In this case, the variance of the in-
put to the response unit should contain a component due to the selection of the

test pattern. One obtains

(3)

TP1967 14



and

M M |
211 1 J ki k
M M . .
t5-5 = o5 wat el o
+ t j=1 k=1
2
1 k k
cl=—vErn s Q (4)
En N

where the summations on t are restricted to patterns in the appropriate class.
| Tthe variance has two components: the first is the average of the variances of
B and may be made arbitrarily small by increasing the number of logic units;
the second is the variance of E(Bt) over the selection of a test pattern, and is
not affected by a change in the number of logic units. The second component

| limits the performance which may be achieved with a perceptron.

Approximate Perceptron Analysis

. t. e
The computation of the exact variance of 8 is very difficult becauce

1 the numbers ijt are quite numerous and are not readily available. ijt
‘ be obtained by a process similar to the one described ir the following section

may

for th; but a vastly expanded measurement program would be required. An

. . - . t. .
approximate method of estimating the variance of 3 is thus desired.

An analysis of the terms contributing to the variance in Equation 2 in-

dicates that the most significant ones occur when j=k. The approximation

> 9.51‘ Ot (5)
e © TG ‘

Q

is exact when j=k. Substituting Equation 5 into 2,

'kt

. LR, Q
2(1 t)~1 jkj jk
i _ fe) \—N- B =Xy ? n'n § 5}([“"‘—'@"""— - QJt th] (6)

k
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When the test pattern is to be selected randomly,

M
21 1 ik j .k jk
o | B TNM—Z L T nn 88 - Q.
NP MM 55k kOt
M M .
+M1 5% % nn aJathth
£ tj=1k=1
2
] :
-{——M 55 nf 6" th] (7)
+ tk

where the summations on t are restricted to patterns in the positive class or

negative class, as appropriate. The expressions in Equations 3 and 7 may be

rewritten as

l B l ~ ~

E(N BJ.-‘ v o> [M+Qt+ -M_ Qt-} (82)

] + t

E|l - Ll slMa -M O (8b)

NP T W % My R - MoR
and
[ M {M O M O

cIz le [ 1 2 k 5kM Q + Tkt - k-

N °+ NM, %, + 7kt | Q,

+Ml:;éM+Qt+_M_ot_)2
RNV, Q -M O ) ’ (9a)
Fot ] ot -t
[ M M. O M O
02-1\178_) = F;lm [Z nk ékM_akn ! k+Q - k-
. - k=1 k
xlM, B, M3 )?1
t + Tttt - t- _J
N R
M T T T e
: ~ ~ 72
- [M‘:‘ zt; M, Q. -M_ Qt_” (9b)
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where the summation on t is again restricted to patterns of the appropriate

class. The symbols Qk+ and Q are used to indicate the average values of

k-

th for t in the positive class and negative class respectively.

Estimation Technique

This section describes how the approximations of Equations 8 and 9 of
‘the preceding section may be combined to estimate the number of logic units
required to achieve a given performance level, and the means by which the
required parameters may be estimated using optical correlations of sample

patterns.

The input to the report-out unit is a random variable due to the random
nature of the selection of the logic units, and the random selection of the test
pattern. The conditional mean and variance of the input given that the test
pattern is a vortex pattern, and the conditional mean and variance given that
the pattern does not contain a vortex, may be computed using Equations 8 and
9. For a given test pattern, the inpuat to the output unit is approximately nor-
mally distributed, since it is the sum of a large number of independent var-
iables —- thc outputs of the logic units. If the number of patterns is large,
and if the means within a class are nearly normally distributed, this approxi-
mation may be extended to a randomly selected test pattern. Given a thres-
hold for the response unit, the conditional means and variances may be used
to compute the false alarm (classifying a paitern as a vortex when it is not)

and missed target rates (not classifying a pattern as a vortex when it is).

The eviluationsf Fquations 8 and 9 is dependent on the evaluation of
the quantities Qt+ and Qt- for various values of t. This may be accomplished ‘
by evaluating th for all values of the subscript j, or by sampling the possible
range of this index, as was done in this study. A method is thus required for
estimating th, the probability that a logic unit will be activated by pattern Sj

z

and by pattern St.

Estimation of th Using Optical Correlation

Let th (u, v) denote the bivariate distribution function of the trans-
parencies s? and St. The contribution of a given input connection to the total

input to the logic unit may be regarded as being equzl in magnitude to the

TP1967 17



transparency of the pattern at the origin point of the connection, times the
weight of that connection. If the origins of the connections ar chosen at random,
independently and according.to a uniform distribution, the following analysis

applies.

Denote by Xj" the input to the i-th connection when Sj is shown. in

and Xti have the joint distribution function th (X:ii Xti) - the same distribution

J
function as the transparencies. The joint distribution of the total inputs Xj
and Xt is given by the convolution of connection density functions, since the

origin points are selected independently. Denote this distribution by Gjt(Xi’Xt)'

Distinguishing those parameters pertaining to the distribution F’t by
J .

tildas (e.g., ;;lj) we have

= A N. - BN_
™ ™3 %5t it
- 2 L
= A =
M t op = Boy
2 ~L
¢. = BO.
J J
. . o 'N L fv2' "~ . . 1
Thus it is necessary to estimate Inj, ™M O and Gy wsing optical

meansurements.

I~
m,

3 J wdF(u,v) = JudFJ.(u)

G,V u

Hence m, is given by the total light passed by the s transparency, ncrmalized

by dividing by the total light passed by an empty frame. m,_is obtained simi-

larly.
~2 2 ~2
o5 = I u dth(u,v) -mj
u,v

8';‘ is obtained by measuring the total light passed by two s? transparencies

exactly superimposed, normalizing as above, and subtracting ﬁ'ij .

I
gjt g J uvdth(u,v) ﬂ’fﬁjﬁat
u

» V
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'E.t is obtained by subtracting r"ri r’ﬁt from the normalized quantity of light
passed by superimposing the S and St transparencies. The correlation
coefficient p is given by %th/’c\;j ?ft {for both th and Gjt'

The calculation of th is greatly simplified by the assumption that the
total input to a logic unit when a pattern is shown is approximately normally
distributed. The pair (Xj’Xt) denoting the total input for patterns Sj and St’

respectively, then would have a bivariate normal distribution.

The derivation of mj, mt, cz, and p is in no way dependent on the

t
normality assumptions; the asumption only insures the sufficiency of this set

of parameters.

The normality assumption is, then, that

(xj..m.)Z (X-m (X -m)  (X,-m

] i i
Z7 32 z 05 T Ty z
(e} (o)

dG (z{ X
it i’ 2
Zﬂo o

Given the normal approximation, and the requisite parameters, the

next problem is to obtain Q

it
2 | 2
(X.-m)) (X ~m, )(}\_ -m ) (X,-m,)
SRS o B TS
z 2 2 (’T— (5‘)” 32
w © l-p (53) (Gt) g
r '
Qi N V1.2 JJ © A
m CJO't -p 69
-m. 8 -m,
By substitution, and letting a = Land b =
%; Ot

—

1 2 2
'2—"——2‘[}’ - ZpYZ + z }
J‘ —— e 1-p dydz (10)

b a?n Ul-p
Many forms for integrating (10) numerically existl. The derivation of
. . - 2
the form used in this study is documented in the final report . The results are

summarized as follows for various ranges of a and b,

lGupta, Shanti S, (1963). "Probat ]1ty Integrals of Multivariate Normal and
Multivariate t," Ann. Math. Stat,, 34, 792-838.

2"Cloud Pattern Interpretation," Astropower, Inc. Report 129-F, August 1963,
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OPTICAL CORRELATION MEASUREMENTS

More than 1200 wide angle photos from TIROS V and TIROS VI were
obtained directly from the TIROS Data Acquisition Staticn on Wallops Island.
All photos that appeared to show the familiar vortex pattern were selected.
For each photo showirg a vortex, a second was selected showing no obvious
storm formation, |

A further selection was made considering the area of earth coverage
within the photo, Since it is conceivable that the selected vortex photos could
show, in general, more horizon in a certain picture area than would nonvortex
photos, or vice-versa leading to an incorrect interpretation of the classification
clues, it was decided to exclude horizon areas by selecting only a round disc
within each rectangular negative. This resulted in the additional benefit that
any two pictures to be correlated could ke rotated with respect to each other
without changing the overlap area. Thus more than one measurement could be
obtained for each pair with little added effort,

The selected 35mm cloud cover negatives had to be copied onto circular
slides that could be incerted in a pair of rotatable slide holders in the optical
correlator, 7To obizain the necessary mechanical rigidity, the slide frames were
fabricated from hard aluminum. An inner diameter of 1 in. was chosen for the
transparency area,

An identical pair of slides for each photographic negative was required
to find its mean gray level and its gray level variance, To obtain identical pairs,
unexposed photographic material was bended to the frames. Then a number of
frames were exposed in sequence to the enlarged image of the original 35mm
negative, Exposure time, brightness, dsvelopment time, and developer liquid
were held as nearly constant as possible. In this way for each negative two
frames were obtained that were identical in their total transmittance within 5%,
The final result of this photograpkic processing was 50 slide pairs of the vortex
class and 50 slide pairs of the nonvortex class, There now existed a combination
of 5000 picture pairs that could be correlated against each other., Since the ro-
tation of a slide in the image plane results in another pattern with respect to the
envisioned recognition system, the number of possible pattern cecmbinations
could be increased indefinitely. For a realistic compromise it was decided that

a total of approximately 10, 000 measurements would provide a reasonable esti-
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mate of the overlap areas between the pattern classes as required for the
mathematical analysis] |

The following measurements were conducted:

a., 100 measurements of the transmittance of an exactly
aligned pair. After these measurements were performed,
only one slide of each pair was used for {urther measure-
ments,

b, It was decided that each negative should be correlated
to 16 other negatives c¢f its own class and 16 of the opposite
class, thus resulting in 1600 pairs. KEach pair was to be
measured for six different rotations relative to each other,
yielding 9600 measurements.

A logbock was desigr.ed which enumerzated the individual picture pairs to
be correlated. The vortex negatives were numbered 1 to 50, the ronvortex
negatives 51 to 100, A 100 x 100 square matrix was then plotted and individual
squares were marked. A mark at the crossing of column m with row n indicates
that negatives m and n form one of the picture pairs to be correlated. The de-
sign was started with the uppe‘r left quarter (esteblished by the overlap of the
first 50 rows with the first 50 columns), which signifies vortex-vortex corre-
lations, After excluding the diagonal frcm 1-1 to 50-50, marks were inserted
at randem, starting at the upper left corner, with the restricticns that each
column and each row should contain 16 marks, and that the resulting pattern
should be symmetrical 2bout the diagcnal, The same procedure was applied
to the lower two quariers using the pattern already establisked in the first
quarter and reshuffling numbers at random. The resulting design assured a
good spread of picture combinatiecns. From the chart a log book was compiled
which, after insertion of the measurement data was transferred directly to IBM
cards by a keypunch operatbr. ’

A system schematic of the cptical correlator is shown in Figure 5.

Figure 6 gives an overall view of the equipment as used in mazaking the measure-
ments. A modulated light beam is generated in the small black enclosure mounted
on the left end of the optical bench, The diverging beam emerges from an aper-

ture in the front of the source enclosure and passes through a collimating lens,
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The collimated beam then passes through the transparencies mounted in the
two slide holders. After passing through the transparencies, the collimated
beam is decollimated, filtered and focused upon a lead sulfide detector. The
output of the photo detector is measured by a tunable microvoltmeter. The
reading of the microvoltmeter is directly proportional to the combined trans-
mittance of the slide pair inserted into the holders.

The setup also contained a monitoring channel for monitoring constant
intensity of the light source. The stability of the correlator was further checked
by periodic calibration measurements to insure constant chopper frequency
(240 cps), exact optical alignment, constant energy density over the slide area
(+2% tolerance was obtained), and linearity of the overall system over the full
range of output amplitudes.

For the correlation measurement of each pair one slide was placed in
slide holder #2 and the other slide was placed in slide holder #1, which was
capable of 360° rotation in the plane of the slide. The slide holder was engraved
with degree graduation so that the slide could be accurately positioned within
1/2° of any designated rotational position.

Six. measurements were made for each pair of slides inserted into the
holders. For all six measurements, the slide in holder #2 {closest to the de-
tector) was inserted and fixed with its index mark at 0°. For the first meas-
urement, the siide in holder #1 was positioned so that its index mark was at 0°.
The slide was then rotated 60° for each of the remaining five measurements.
Upon completion of the six measurernents, the pair of slides was replaced by
the next pair, as designated by the logbook. This procedure was followed until

the 1600 sets of measurements were completed.
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THE COMPUTER INVESTIGATION

System Parameters Under Investigation

The system under investigation is specified to be a forced learning
perceptron. The logic units in the perceptron are specified to have their input
connections arising from sensory points selected at random according to a
uniform distribution. A representative set of patterns was selected. The
remaining system parameters are:

a. Logic unit parameters

b. Number of logic units

c. Output unit threshold
The computer investigation may be characterized as a search for a suitable
set of Jogic unit parameters. The optimum threshold for the output unit and
the number of legic units required to approach asymptctic performance were
obtained for the various logic urit parameter sets,

The logic unit parameters of interest are the number cf input connections
per logic unit, the weights essigned to the connections, and the logic unit thresh-

old. The logic unit parameters are completely described by the two numbers:

where the wi‘s are the weights assigned to the connections (and may te positive

or negative) and § is the unit threshold,

General Form of Program and Sequence of Computer Runs

To perform the estimeation procedure, the eguations of the approximate

erceptron analysis were mechanized on an IBM 7094, The comnuter routine
-
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consists of a main program which exarnined the data oktained by the optical
correlation procedure, and two subroutines. One subroutine computed the
empirical distribution of Qj!' from the equations with limits imposed by the
patterns being tested and the other provides a means for printing out some of
the results in a suitable fermat. A simplified flow chart of the computer routine
is shown in Figure 7.

The 9600 data pcints were precessed for a number of parameter com-
binations., The purpese of these repeated trials was to attempt to find an opti-
mum for the input connecticns to the logic units and a logic unit threshcld, cne
that would process the data with a minimum of errors., Ezach computer run con-
sisted of seven parzmeter combinations and took approximately 10 mirutes of
computer time,

In erder to permit conducting a mcre extensive investigation, the
possibility of using a fraction of the availgble dats was invesiigated. The pro-
gram checkout decks invelving 120, 720, and 840 optical correlation measure-
ments were completely inadequate. A set cf 2400 measurements was carefully

selected to provide 24 measurements on Qk+ and 24 measturemen*s cn Q, for

k=
each value of the index k. The results obtzined with these shori date decks were
compared with those cbtained using the full set of 9600 correlations (9€ observa-
tions on each Qk+ and Qk_). The immeans and standard deviations returned by the
short deck generally differed by 20 to 50% from the values given by the full deck,
This accuracy was considered inadequate, and the use of partiz] data decks was

discontinued.

Description of Program

The implementation of the prcgram cconsisted of the following:

a. Read in half of C tatle (integral of the normal distribution),
2
=M
S . 2 2
compute other half of C table. Compute g~ and e o
=

b. Compute D, =n_-n_and D, = 3/ n_+n_ , multiplying
1 x Ty 2 Xy .
factors for the mean and standard deviation of the patterns of

one input to convert to many inputs.
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uZ -u2/2
Read in Table f & 4t
Compute u2-2 - V2w
-u /2
Compute
Ve
Compute Dl = nx - ny
Compute D, = Yhx + hy

y

Read in Test Data on
Single Slides

T.,, T,, T.., T
( i T2y Ty T

Y

Read in Remaining
Test Data Tjt(L)

L =1,6

Compute Correlation
Betweer Patterns

e

(0, ¥1-0%)

For New nx, ny, § Combination

Compute integral limits,
Compute integral multi-
plying factors.

Y

Repeat

Subroutine MEMR
- or

arctangent function

Check limits and multi-
plying factors.

Repeat For All Test Data

Compute empirical
distribution of pattern

% classes

Compute mean and
standard deviation of
both pattern classes

Y

Compute number of
logic units required

‘Figure 7. Simplified Flow Chart of Computer Program
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c. Read in the single slide ’le and sz) and the single slide

squared (Tji) measurements and normalized by (I/TO).

d. Read in remaining ogtical correlation measurements (T't)’
J .

six rotations per slide pair, ncrmalized by (I/TO).

NOTE: Since storage restraints did not permit operating on all data

TP-1967

peints during one pass through the computer, the correlations
were perfcrmed in groups of 20 data cards per pass,
e. Determine the class of the pattern under consideraticn

{from its index number).
f. Compute the correlation {p) between the two patterns

: .  , 2
being prccessed for each rotation andw = Y 1-p~ .
g. Compute the limits of the inltegral.
h. Compute Qj and Q{single-slide prebability of activating
a logic unit).
i. Check the limits to determine if they are above or below
the bounds set on the integral, or equzl to zero. Check
integral multiplying factors # 0,

i. Compute the empirical distribution of Qj"'

k., Compute the average of th {Qk+ and ka) for patternsin
each class.

1, Compute the mean and the standard deviaticna for both
pattern classes., Compute the standard deviation as a function

of both the selection of the logic urits and the distribution of

the patterns.
m., Compute the difference of the means.

n. Compute the separation cf pattern classes as a function of

the number of logic units in the machine.

o. Select threshold which minimizes the number of errors on

the asymptotic performeance,

29



The computer routine returned the following outputs:

a. The expected values of the input to the decision element
for patterns of the positive class and for patterns of the

negative class, and the difference between these values.
b. The inherent standard deviation within each class.

c. The standard deviation for each class due to logic unit

selection.

d. The asymptotic class separation in standard deviations

(see Figure 8).

e. The minimum number of misclassified patterns, asymptotic

performance (see Figure 7).

f. A table of the expected input to the decisicn element as a

function of the pattern,

g. A table of the class separation in standard deviations, as

a function cf the number of logic units (see Figure 9),

h. The decision unit threshold producing minimum errors in

asymptotic performance, and a table of these errors,
i. A table of the probability of a logic unit being active, as
a function of the pattern.

jo Tables of Qk+ and Qk-’

k. Tables of the empirical distribution of ij for two vortex
patterns, one vortex and one nonvortex pattern, and two non-

vortex patterns.

Results of Computer Program

Using the final program and the full data set, some 77 combinations of
¢ and B were investigated. In addition, 36 other combinations were investigated
(16 with the full data deck) with an earlier version of the program., The earlier
program did not provide all of the outputs desired, but was adequate to determine

the suitability of the parameters.
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The 77 points were obtained in three passes on the computer, In the
first pass, 28 scattered points were selccted; the choice being guided by the
earlier partial results on 36 points. Based cn these 28 cecmbinations, 28 more
points were selected tc provide a finer grid in certain areas., The third pass
of 21 points examined the region around o= 0.9 and B = 0,0, where the number
of errors appeared to be approachirg a minimum.

None of the parameter combinations resulted in good separation of the
palttern classes, The approximation used in estimating the component of
variance due to logic unit selection requires gocd class separation for high
accuracy. In many cases, separation was so pcor that negative estimates of
this component of variances were returned, In some cases, the mean value of
the input to the response urit for the pcsitive class was less than that for the
negative class, Two criteria were used in deciding whether s parameter com-

binaticon warranied further consideration:

a, The mean value fcr the positive class had to be greater

than the mean value for the negative class,
b. The variance estimates had to be positive,

Only 11 of the 28 comkbinaticns in the first pass met! these requirements. (It
can be shown that failure tc meet condition {a} is an inadequacy of the optical
correlation; and not of the perceptron technique, If gocd separation had been
obtained, however, the measurement irsaccuracies would not be of such signifi-
cance. )

The most significant computer outpuis are summarized in Figures 8
through 10. For each parameter set a threshold for the cutput urit was selected
to produce a minimum number of errors in the asymptctic performance, These
minimum values are shown in Figure 8. The lowest value obtaired was 32, A
second threshold for the output unit was selected, this one providing maximum
number of standard deviations for the threshold-to-class mean separation.
These separations zgain are for the asymptotic performance. They are presented
in Figure 9, The absence of an entry on the chart indicates failure to meet re-
quirement (a) above. The number of logic units required to achieve separations

equal to 93. 9% of the asymptotic separation are given in Figure 10, Since the
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computer must return positive estimates of the variance for these calculations,
Figure 10 reveals those parameter combinations for which the approximation
failed to yield positive variances.

Summarizing the results, parameter combinations which could be
analyzed at all were difficult to find, For those combinations which could
be analyzed, class spearations were poor, giving rise to high error rates.
A network of about 400 to 500 logic units should provide essentially asymptotic

performance for the better parameter sets. However, if the interciass separa-

tions were better (a factor of 20 seems desirable) the error rate could be reduced

significantly. More logic units would then be required to achieve asymptotic

performance.

TP-1967
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CONCLUSIONS

The primary purpose of this program was to show the feasibility of
the application of self-organizing techniques to the design of a parallel logic
system for the automatic interpretation of satellite cloud cover photographs.

This was to be accomplished in two stages:

a. The estimation of machine size required by the application
of a learning algorithm that had been thoroughly documented
mathematically - the forced learning procedure, The estimate
was to be based on the results of optical correlation of a number
of actual TIROS photographs containing both storm and nonstorm
components, Only gross storm features (vortex structures)

were to be involved in this first estimation task,

b. The extrapolation of the results obtained from the application
of this open-loop, nonselective, random preoperty algorithm to
more powerful algorithms, such as natural selection and non-
random generation of the property list, to increase logic unit

efficiency and reduce machine size.

Since it was believed that a self-organizing system vsing forced learning
could be made to asymptotically approach perfect performance for a recognition
task of this nature, economic feasibility then could be determined simply by
estimating the required complexity of the logic layer {in terms of the number of
logic units) to arrive at some preselected closeness of approach to perfect per-

formance,

Program Results

Optical correlations on 100 cloud cover transparencies (50 vortex,
50 nonvortex) were performed with a number of rotations of each pattern, giving
a total of 9600 data points. This data was examined by a computer routine which
mechanized the estimation procedure. Results of this program may be summar-

ized as follows:

a. The nature of the patterns to be classified was such that good
separation between pattern classes (vortex and nonvortex) was not
obtainable. This was due in part to the inaccuracy of the optical
correlation procedure and photographic processing (5% overall ac-
curacy was achieved through diligent photograph selection and

control of the measurement apparatus). However, the primary

TP-1967 | 36



cause appeared to be the complexity of the patterns themselves.

b. Computer analysis of the resulting test data showed that due
to the lack of good class separation, the limiting performance of
a forced learning perceptron was in the order of 65 to 70% of per-
fect performance. This level of performance could be achieved

with 400 to 500 logic units.

c. The study of alternative self-organizing routines has produced
more powerful algorithms involving a closed-loop decision process
which promises considerable improvement of system performance
by incorporating a learning operation having essentially two stages.
The first stage is the implementation of a nonrandom procedure
for the generation of the preperty list (discriminant analysis}),

The second stage is the maximization of the class separation by

a closcd-loop learning process which concentrates on those pat-

terns most difficult to classify (iterative design).
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